Knockout of Toll-like receptor 2 attenuates Aβ25–35-induced neurotoxicity in organotypic hippocampal slice cultures

نویسندگان

  • Eun Cheng Suh
  • Yeon Joo Jung
  • Yul A. Kim
  • Eun-Mi Park
  • Sung Joong Lee
  • Kyung Eun Lee
چکیده

Toll-like receptors (TLRs), which have been implicated in various neuroinflammatory responses, are thought to act in defense mechanisms by inhibiting neuronal cell death in Alzheimer's disease. In this study, we evaluated the effects of TLR2 on amyloid beta peptide 25-35 (Aβ25-35)-induced neuronal cell death, synaptic dysfunction, and microglial activation in organotypic hippocampal slice cultures (OHSCs) from wild-type (WT) C57BL/6 mice and TLR2-knockout (KO) mice. In WT mice, Aβ25-35 induced β-amyloid aggregation and surrounding TLR2 expression. And, propidium iodide (PI) uptake, which is a measure of cell death, increased in a dose-dependent manner in slices with Aβ25-35 treatment. In the Aβ25-35-treated TLR2-KO OHSCs, the PI uptake was significantly attenuated to the control level, indicating that the cells were less susceptible to Aβ25-35-induced neuronal toxicity. In the ultrastructural analysis, nuclear shrinkage, slightly swollen mitochondria, and degraded organelles were detected in the Aβ25-35-treated slices from WT mice but not in the Aβ25-35-treated slices from TLR2-KO, suggesting the resistance of TLR2-KO to Aβ25-35-induced neurotoxicity. In Aβ25-35-treated OHSCs of WT mice, the levels of phosphorylated tau were increased and the levels of synaptophysin were decreased in a dose-dependent manner, but they were not changed in OHSCs of TLR2-KO mice. In WT mice, Aβ25-35 increased total protein level and immunoreactivity of Iba-1, which was colocalized with TLR2. However, there were no significant changes in the slices of Aβ25-35-treated TLR2-KO mice. These results suggested that TLR2 may play a role in Aβ25-35-induced neuronal cell loss and synaptic dysfunction through the activation of microglia in OHSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amyloid-β induced toxicity involves ganglioside expression and is sensitive to GM1 neuroprotective action

The effect of Aβ25-35 peptide, in its fibrillar and non-fibrillar forms, on ganglioside expression in organotypic hippocampal slice cultures was investigated. Gangliosides were endogenously labeled with D-[1-C(14)] galactose and results showed that Aβ25-35 affected ganglioside expression, depending on the peptide aggregation state, that is, fibrillar Aβ25-35 caused an increase in GM3 labeling a...

متن کامل

Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats.

BACKGROUND Neuroapoptosis is induced by the administration of anesthetic agents to the young. As alpha2 adrenoceptor signaling plays a trophic role during development and is neuroprotective in several settings of neuronal injury, the authors investigated whether dexmedetomidine could provide functional protection against isoflurane-induced injury. METHODS Isoflurane-induced injury was provoke...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

Mitochondrial Ferritin Deletion Exacerbates β-Amyloid-Induced Neurotoxicity in Mice

Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein which protects mitochondria from iron-induced oxidative damage. Our previous studies indicate that FtMt attenuates β-amyloid- and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. To explore the protective effects of FtMt on β-amyloid-induced memory impairment and neuronal apoptosis and the mechanisms involved, 10-mon...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurochemistry International

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2013